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Higgs-like pair amplitude dynamics in superconductor–quantum-dot hybrids
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We consider a quantum dot weakly tunnel coupled to superconducting reservoirs. A finite superconducting
pair amplitude can be induced on the dot via the proximity effect. We investigate the dynamics of the induced
pair amplitude after a quench and under periodic driving of the system by means of a real-time diagrammatic
approach. We find that the quench dynamics is dominated by an exponential decay towards equilibrium. In
contrast, the periodically driven system can sustain coherent oscillations of both the amplitude and the phase of
the induced pair amplitude in analogy to Higgs and Nambu-Goldstone modes in driven bulk superconductors.
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I. INTRODUCTION

Superconductivity has been an active field of research
since its discovery more than one hundred years ago. From a
fundamental point of view, it constitutes a macroscopic man-
ifestation of quantum coherence that gives rise to interesting
phenomena such as flux quantization in superconducting rings
[1–3] and the Josephson effect [4], i.e., the dissipationless
flow of charge currents in superconducting junctions in the
absence of any bias voltage. At the same time it is also of
relevance for applications such as superconducting quantum
interference devices [5] that can act as extremely sensitive
magnetometers.

A microscopic understanding of superconductivity has
been achieved within BCS theory [6], which describes the
transition between a normal metal and a superconductor as
a second-order phase transition in which electrons condense
into s-wave, spin-singlet Cooper pairs. The associated super-
conducting order parameter is given by the macroscopic wave
function of the Cooper pairs �eiφ , whose form indicates the
breaking of the U(1) symmetry. This breaking of a continuous
symmetry implies the existence of collective gapless excita-
tions. For a superconductor, these Nambu-Goldstone modes
correspond to fluctuations of the phase of the superconducting
order parameter. While a superconductor is invariant under
a variation of the phase, the Nambu-Goldstone modes are
shifted to the plasma frequency by the Anderson-Higgs mech-
anism [7–10]. In addition, in a superconductor one can excite
fluctuations of the amplitude of the superconducting order
parameter. The amplitude mode is a gapped mode with min-
imal excitation energy 2�, i.e., equal to the superconducting
gap, and is called the Higgs mode in analogy to the Higgs
boson in particle physics [10]. Since the Nambu-Goldstone
modes are shifted to the plasma frequency, the Higgs mode is
the lowest-energy collective excitation of the superconducting
order parameter and, therefore, stable against a decay into the
phase mode [11].

Experimental detection of the Higgs mode is challenging
for a number of reasons. First of all, it is a charge-neutral
mode that does not couple directly to electromagnetic fields.

In addition, for typical BCS superconductors the energy of the
Higgs mode is in the terahertz (THz) regime, where until re-
cently there was a lack of suitable sources to excite the system.
Finally, the Higgs-mode energy of 2� equals the threshold for
single-particle excitations, which makes it difficult to excite
the Higgs mode without exciting quasiparticles at the same
time.

Experimentally, the Higgs mode has been observed for
the first time by Raman scattering in materials that both are
superconducting and show a charge density wave [12,13].
Recent advances in the field of THz radiation have allowed
for the excitation of the Higgs mode by monocycle THz
pump pulses and its subsequent observation via the transient
oscillation of the transmitted THz probe radiation [14]. The
experimental results have been explained in terms of the dy-
namics of Anderson’s pseudospin in a two-dimensional BCS
model [15] and within a gauge-invariant microscopic kinetic
theory of superconductivity [16]. In addition, the Higgs mode
excited by THz pulses has also been probed by third-harmonic
generation [17], which arises due to the nonlinear coupling to
electromagnetic fields [18,19]. The Higgs mode has also been
observed by THz spectroscopy of thin, disordered supercon-
ducting films close to an insulator-superconductor quantum
phase transition, where it manifests itself as an excess absorp-
tion at energies below the superconducting gap [20]. Recently,
it has been demonstrated experimentally that in the presence
of supercurrents the Higgs mode becomes infrared active and
gives rise to a sharp resonant peak in the optical conductivity
at the Higgs frequency [21].

Additional theoretical works have studied the Higgs
mode in unconventional superconductors [22] as well as the
interplay of Higgs and Leggett modes in multiband super-
conductors [23,24]. Furthermore, the occurrence of the Higgs
mode in superconductor–normal-metal junctions [25] and its
signatures in transport properties have been analyzed [26,27].
Recent reviews on Higgs physics in superconductors can be
found in Refs. [28,29].

In this paper, we investigate the dynamics of super-
conducting correlations in a time-dependently driven
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superconductor–quantum-dot hybrid structure.
Superconductor–quantum-dot heterostructures have been
studied intensively both from a theoretical and from an
experimental perspective; see Refs. [30,31] for recent
reviews. They exhibit an exciting playground to study the
interplay between the superconducting proximity effect,
strong Coulomb interactions, and transport situations far
from equilibrium. Furthermore, they provide a high degree of
tunability by applying, e.g., magnetic fields or gate voltages.
Studying the pair amplitude dynamics of a quantum dot
allows us to analyze the coherent dynamics of a single
Cooper pair rather than the collective dynamics of all Cooper
pairs which gives rise to the order-parameter dynamics
in bulk superconductors. Furthermore, in a quantum-dot
system, the Cooper pair dynamics can be investigated
under different forms of external driving such as parameter
quenches and periodic driving in situations far away from
equilibrium. As we will demonstrate below, a nonequilibrium
situation induced, e.g., by a temperature bias between
the superconducting reservoirs is crucial in establishing a
coherent pair amplitude dynamics on the quantum dot even in
the weak-coupling limit.

At this point, we would like to point out that there are some
fundamental differences between the pair amplitude dynamics
of the quantum dot and the Higgs mode in bulk supercon-
ductors. First of all, in the bulk case, the central quantity of
interest is the superconducting order parameter �, which is
the macroscopic wave function of the whole superconducting
condensate. In contrast, the pair amplitude of the quantum dot
describes a single Cooper pair on the dot which is coupled
to macroscopic condensate in the superconducting reservoirs.
Second, the equilibrium value of the bulk order parameter is
determined by the maximization of the free energy, while the
stationary, nonequilibrium value of the dot’s pair amplitude is
determined by the solution of a generalized master equation.
While the dynamics of both the bulk order parameter and the
dot’s pair amplitude are governed by a Bloch-type equation
for the Anderson pseudospin, the precession frequency of the
pseudospin degree of freedom is given by the superconduct-
ing gap 2|�| in the bulk case, while it is determined by an
effective exchange field Bex in the quantum-dot case which
depends on the tunnel coupling, the Coulomb interaction, the
superconducting order parameter of the electrodes, and the dot
level detuning. Furthermore, the dynamics of the bulk order
parameter does not couple directly to external electromagnetic
fields, while the dynamics of the pair amplitude is directly
connected to the gate voltage applied to the quantum dot.
Since the Higgs mode is difficult to excite in bulk supercon-
ductors, the order parameter oscillates by less than 10% in
typical present experiments. In contrast, the quantum-dot sys-
tem allows for much larger oscillations of the superconducting
pair amplitude. Finally, in the bulk case the Higgs mode is the
only low-energy excitation of the order parameter, while the
Nambu-Goldstone mode is shifted to the plasma frequency
by the Anderson-Higgs mechanism. In contrast, for the pair
amplitude on the dot, one can excite both amplitude and phase
modes at low energies.

The paper is organized as follows. In Sec. II, we present our
theoretical model of a superconductor–quantum-dot hybrid
structure. We discuss the real-time diagrammatic approach

FIG. 1. Schematic sketch of the system. A single-level quantum
dot is tunnel coupled to two superconducting reservoirs η = L, R at
different temperatures Tη. The system is subject to time-dependent
driving via modulations of the level position or a superconducting
phase difference that changes with time. The driving gives rise to a
nontrivial dynamics of the superconducting pair amplitude induced
on the dot via the proximity effect which is characterized by the
pseudospin I that describe coherent superpositions of the empty and
doubly occupied dot states.

used to analyze the system in Sec. III. The results for the pair
amplitude dynamics on the quantum dot after a quench and
under periodic driving are analyzed in Secs. IV A and IV B,
respectively. Conclusions are drawn in Sec. V.

II. MODEL

We consider a single-level quantum dot weakly tunnel cou-
pled to two superconducting electrodes η = L, R; see Fig. 1.
Both superconductors are kept at the same electrochemical
potential but can have different temperatures Tη, thus driving
the system into a stationary nonequilibrium state. In addition,
the system is subject to a time-dependent driving of either the
superconducting phase difference φ(t ) or the level position
of the quantum dot ε(t ) that can be tuned by an applied gate
voltage. The setup is described by the total Hamiltonian

H =
∑

η

Hη + Hdot + Htun. (1)

The first term describes the two superconducting electrodes in
terms of the mean-field BCS Hamiltonian

Hη =
∑
kσ

εηka†
ηkσ aηkσ + �ηeiφη

∑
k

aηk↑aη−k↓ + H.c., (2)

where the first term corresponds to the kinetic energy of elec-
trons in lead η with spin σ and momentum k. The second
term describes the superconducting pairing. The supercon-
ducting order parameter is characterized by its phase φL(t ) =
−φR(t ) = φ(t )/2 and its absolute value �η. We assume both
superconductors to have the same critical temperature Tc and,
therefore, to have the same absolute value of the order param-
eter at zero temperature, �0 = 1.764kBTc. The temperature
dependence of �η follows from a self-consistency equation
that can be solved only numerically. However, the temperature
dependence can be approximated with an error of less than 2%
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as

�η(Tη ) = �0 tanh

(
1.74

√
Tc

Tη

− 1

)
(3)

in the whole temperature range from Tη = 0 to Tη = Tc. We
assume the density of states of the leads in the normal state
ρN

η to be independent of energy, which is a reasonable approx-
imation for the energy scales involved in our considerations.
The density of states in the superconducting states normalized
to ρN

η is then given by the standard BCS expression

ρBCS
η (E ) = |E |�(|E | − |�η|)√

E2 − �2
η

. (4)

The second term in Eq. (1) describes the quantum dot in
terms of a single, spin-degenerate level with time-dependent
level position ε(t ) as

Hdot =
∑

σ

ε(t )c†
σ cσ + Uc†

↑c↑c†
↓c↓, (5)

where the second term denotes the Coulomb energy U that
is necessary to occupy the quantum dot with two electrons at
the same time. As we will detail below, the superconducting
proximity effect, which gives rise to a finite superconducting
pair amplitude on the dot, has a sizable effect only if the empty
and doubly occupied states are quasidegenerate. This happens
close to the particle-hole symmetric point ε = −U/2. We
characterize deviations from this point by the time-dependent
detuning δ(t ) = 2ε(t ) + U .

The coupling between the dot and the leads is given by

Htun =
∑
ηkσ

tηa†
ηkσ cσ + H.c., (6)

where we assume the tunnel matrix elements tη to be in-
dependent of spin and momentum. They are related to the
tunnel-coupling strengths 
η = 2π |tη|2ρN

η . The total tunnel
coupling is given by 
 = 
L + 
R.

III. REAL-TIME DIAGRAMMATIC TRANSPORT THEORY

In order to describe the dynamics of the superconducting
pair amplitude induced on the quantum dot by the coupling to
the superconducting reservoirs, we make use of a real-time
diagrammatic approach [32–34] in its extension to super-
conducting leads [35,36]. It allows us to describe arbitrary
nonequilibrium situations, to take into account the Coulomb
interaction on the quantum dot exactly and to perform a
systematic perturbation expansion in the tunnel couplings.
The real-time diagrammatic approach is based on the idea of
integrating out the noninteracting reservoir degrees of free-
dom and describing the quantum-dot degrees of freedom in
terms of a reduced density matrix ρred with matrix elements
Pχ1

χ2
= 〈χ1|ρred|χ2〉. Here, χ1,2 denote the eigenstates of the

quantum-dot Hamiltonian, i.e., the empty dot |0〉, the dot
occupied with a spin-up electron | ↑〉 or a spin-down elec-
tron | ↓〉, and the doubly occupied dot |d〉. We remark that
the formulation of the real-time diagrammatics in Ref. [35]
also explicitly accounts for the number of Cooper pairs in
the leads. This particle-number-conserving formulation is re-
quired to properly describe situations in which a bias voltage

is applied between superconducting leads. Since we focus on
a situation where all superconducting leads are at the same
electrochemical potential, we can simplify the description and
drop the number of Cooper pairs in the leads. The time evo-
lution of the reduced density matrix is given by a generalized
master equation of the form

dPχ1
χ2

(t )

dt
= − i(Eχ1 − Eχ2 )Pχ1

χ2
(t )

+
∑
χ ′

1,χ
′
2

∫ t

−∞
dt ′W χ1χ

′
1

χ2χ
′
2

(t, t ′)Pχ ′
1

χ ′
2
(t ′). (7)

The first term on the right-hand side describes the coher-
ent evolution of the quantum-dot system. The second term
arises due to the dissipative coupling to the superconducting
reservoirs. The generalized transition rates W

χ1χ
′
1

χ2χ
′
2

are eval-
uated as irreducible self-energy blocks of the quantum-dot
propagator on the Keldysh contour. In the following, we will
take into account tunneling processes up to first order in the
tunnel coupling only. This accounts for both normal tunneling
processes and Andreev processes. The latter give rise to the
superconducting proximity effect on the quantum dot and
induce a finite superconducting pair amplitude on the dot. We
emphasize, though, that there is no Josephson current through
the quantum dot due to first-order processes. The latter require
a coherent charge transfer between the two superconducting
leads and can therefore occur only in second- and higher-order
processes [36].

The time-dependent driving of the system affects the dy-
namics of the reduced density matrix in two ways. First, it
gives rise to a dependence of the generalized transition rates
on driven parameters. Second, it introduces memory effects;
that is, density-matrix elements at time t depend on density-
matrix elements at earlier times t ′. A systematic treatment of
these non-Markovian effects has been developed in the frame-
work of the real-time diagrammatic approach in Refs. [37,38].
In particular, non-Markovian effects also modify the form
of the generalized master equation by giving rise to an ad-
ditional inhomogeneity [39–41]. In the following, we will
take into account only the Markovian contributions to the
dynamics. This is motivated by the fact that we expect the
order-parameter dynamics that we are interested in to take
place on time scales larger than the inverse tunnel coupling,
whereas memory effects are relevant for times much shorter
than the inverse tunnel couplings.

The form of the generalized master equation (7) implies
that coherent superpositions between two dot states are only
possible if the energy splitting between the states is compa-
rable to the generalized transition rates, i.e., if it is of the
order of the tunnel coupling. Hence, for the superconductor–
quantum-dot system, coherent superpositions of the empty
and doubly occupied states can occur only for δ(t ) ∼ 
. In
addition, we require the Coulomb energy to be larger than
the superconducting gaps, U > 2�η, because otherwise no
tunneling of quasiparticles is possible to lowest order in 
.

We can cast the master equation into a physically more
intuitive form by introducing the probabilities of finding the
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dot occupied with an even or odd number of electrons

P =
(

Pe

Po

)
=

(
P0 + Pd

P↑ + P↓

)
. (8)

Furthermore, we introduce a pseudospin degree of freedom
involving the empty and doubly occupied dot states in analogy
to Anderson’s pseudospin as

I =
⎛
⎝Ix

Iy

Iz

⎞
⎠ =

⎛
⎝RePd

0
ImPd

0
P0−Pd

2

⎞
⎠. (9)

With the above definitions, we can decompose the generalized
master equation into one set that describes the time evolution
of the occupation probabilities

dP
dt

=
∑

η

[(−Z−
η Z+

η

Z−
η −Z+

η

)
P + 4X −

η

(
1

−1

)
I · nη

]
. (10)

The dot occupation can change due to tunneling in and out of
electrons with rates

Z±
η = 2
η

h̄
ρBCS

η (U/2) fη(±U/2) (11)

as described by the first term. Here, fη(ω) = [exp(ω/kBTη ) +
1]−1 denotes the Fermi function of lead η. In addition, the dot
occupation is also influenced by the pseudospin accumulation
via the second term where the rates

X ±
η = ±2
η

h̄

�η

U
ρBCS

η (U/2) fη(±U/2) (12)

are due to Andreev processes and nη =
[cos φη(t ), sin φη(t ), 0] denotes a unit vector that charac-
terizes the phase of the superconducting order parameter
in the leads. We remark that the rates Z±

η and X ±
η formally

diverge for U/2 = �η due to the divergence of the BCS
density of states at the gap edge. In a real system, the BCS
density of states is smeared out, thus turning the divergence
into a pronounced peak and rendering the transition rates
finite at U/2 = �η. A second set of equations describes the
time evolution of the pseudospin as

dI
dt

=
(

dI
dt

)
acc

− I
τrel

+ Bex × I. (13)

The first term on the right-hand side accounts for the accumu-
lation of pseudospin on the dot due to the tunneling in and out
of electrons (

dI
dt

)
acc

=
∑

η

(X −
η Pe + X +

η Po)nη. (14)

The second term describes a relaxation of the pseudospin
on a time scale 1/τrel = ∑

η Z−
η , which is also caused by

the tunneling of electrons. Finally, the third term gives rise
to a coherent precession of the pseudospin in an effective
exchange field given by

Bex =
∑

η

Bηnη + δ(t )ez, (15)

where

Bη = 2
η

π h̄

∫ ′
dωρBCS

η (ω)
fη(ω)

ω + U/2
sgn ω. (16)

The exchange field arises from virtual Andreev tunneling
processes between the dot and the superconductors which
renormalize the excitation energies of the empty and dou-
bly occupied dot states relative to each other. Interestingly,
the level renormalization which is of the order of the tun-
nel coupling 
 impacts the pseudospin dynamics already in
sequential tunneling because the dwell time of electrons on
the dot scales as 
−1 such that the precession angle is of the
order O(
0). In addition, the exchange field has a contribution
along the z axis which arises from the breaking of particle-
hole symmetry by the detuning δ.

We remark that the fact that the generalized master equa-
tions can be formulated in the coordinate-free version shown
above is linked to gauge invariance, i.e., to the fact that
the phases of all superconducting pair amplitudes can be
changed by the same amount without changing the underlying
physics.

A central quantity of interest in the following is the
time-dependent, proximity-induced superconducting pair am-
plitude on the quantum dot. It is given by

F = 〈c↓c↑〉, (17)

such that its absolute value |F | can be expressed in terms of
the pseudospin as

|F | =
√

I2
x + I2

y , (18)

while its phase � is given by

� = arctan
Iy

Ix
. (19)

A time-dependent modulation of the absolute value |F | can
be considered as an analog of the Higgs mode in bulk super-
conductors, while a modulation of � represents the analog
of the Nambu-Goldstone mode. We remark that the phase
� is itself not a physical observable, but should always be
considered relative to the phases of the two superconducting
reservoirs.

IV. RESULTS

In the following, we are going to discuss the dynamics of
the superconducting pair amplitude induced on the quantum
dot via the proximity effect. We will start our analysis by
considering the dynamics after a quench in Sec. IV A and
then turn to the dynamics in the case of a periodic driving
in Sec. IV B.

A. Quench dynamics

We analyze the pair amplitude dynamics after a quench of
the system parameters. To this end, we focus on the situation
where the dot is coupled to a single superconductor because
this scenario contains already all essential features of the dyn-
amics but can be tackled fully analytically at the same time.
To keep our notation as simple as possible, we omit the
lead index η and choose the phase φ = 0 in the remaining
discussion of the quench dynamics. Furthermore, we focus
on the particle-hole symmetric point δ = 0 to obtain compact
analytical expressions. We remark that away from δ = 0 there
are no qualitatively new features in the relaxation dynamics.
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We consider a situation where the dot is prepared in an ar-
bitrary initial state. At time t = 0, the dot is coupled to the su-

perconducting reservoir. The subsequent relaxation dynamics
is given by the solution of the generalized master equation as

Pe(t ) = f (U/2) + eγch3t + eγpt

2

[
P(0)

e − f (U/2)
] + eγch3t − eγpt

2�

{
Z+[

P(0)
e − f (U/2)

] − 8X −I (0)
x

}
, (20)

Po(t ) = 1 − Pe(t ), (21)

Sz(t ) = S(0)
z eγspint , (22)

Ix(t ) = eγch3t + eγpt

2
I (0)
x + eγch3t − eγpt

2�

{
Z−I (0)

x + 2(X + − X −)
[

f (U/2) − P(0)
e

]}
, (23)

Iy(t ) = e
γch1+γch2

2 t
(
I (0)
y cos Bt − I (0)

z sin Bt
)
, (24)

Iz(t ) = e
γch1+γch2

2 t
(
I (0)
y sin Bt + I (0)

z cos Bt
)
, (25)

where density-matrix elements with a superscript such as P(0)
e

denote the values at the initial time t = 0.
The time evolution of the occupation probabilities is

governed by an exponential decay towards the equilibrium
occupation Pe = 1 − Po = f (U/2) with two rates, γch3 =
−Z− − (Z+ − �)/2 and γp = −Z− − (Z+ + �)/2, where
� =

√
16X −(X − − X +) + (Z+)2. The decay is driven by the

nonequilibrium occupation of the dot but is also influenced by
a finite pseudospin accumulation along the x axis in the initial
state. Any (real) spin accumulation Sz along the z axis on the
dot follows a simple exponential decay with rate γspin = −Z+.
The x component of the pseudospin shows an exponential
decay of the initial pseudospin accumulation with rates γp

and γch3 but is furthermore affected by a nonequilibrium dot
occupation on the same time scale. As we will demonstrate
below, the latter term can even give rise to an initial increase
of the pseudospin right after the quench. Finally, the y and
z components of the pseudospin both decay with the rate
(γch1 + γch2)/2, where γch1,2 = −Z− ± iB as expected from
the master equation (13). In addition, the two pseudospin
components show an oscillatory behavior with a frequency
given by the exchange field B.

The quantities γch1−3, γp, and γspin together with γeq =
0 are the eigenvalues of the transition-rate matrix. Their
temperature dependence is shown in Fig. 2. Above the crit-
ical temperature Tc of the superconducting lead, the three
eigenvalues γch1−3 are identical. The resulting four differ-
ent eigenvalues all have an intuitive physical interpretation
[42–44]. The eigenvalue γeq = 0, which is independent of
temperature, is related to the stationary state of the system.
The eigenvalue γspin describes the decay of spin accumulation.
The decay of charge on the dot is governed by γch1-3 = −Z−,
while the decay of the occupation parity is determined by
γp = −2
/h̄.

Below the critical temperature, the three eigenvalues γch1−3

split into one pair of complex eigenvalues and a third, real
one; compare Fig. 2(b) and the corresponding analytical ex-
pressions above. As can be seen from the time evolution of
the density-matrix elements after the quench, the eigenvalues
γch1−3 and γp no longer describe the decay of charge and
parity, respectively, but rather account for the decay of linear
combinations of charge, parity, and pseudospin. As the tem-

perature is lowered, the spin decay rate decreases because it
is exponentially suppressed by U/kBT . At the same time, γp

increases significantly with decreasing temperature because

0.0 0.2 0.4 0.6 0.8 1.0 1.2
T/Tc

0

2

4

6

8

|γ|
/Γ

(a)

γeq

γspin

γch3

γch1,2

γp

−4 −3 −2 −1 0
Re γ/Γ

−0.2

0.0

0.2

Im
γ
/Γ γparity

γch1

γch2

γch3

γspin

γeq

(b)

FIG. 2. (a) Absolute value of the relaxation rates γi as a function
of temperature. (b) Real and imaginary parts of the relaxation rates
γi. Parameters are T = 0.8Tc, U = 4kBTc, and δ = 0.
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0.0

0.1

0.2

|F
|

T = 0.1Tc

0.0

0.1

0.2
T = 0.5Tc

0 5 10
Γt

0.0

0.1

0.2

|F
|

T = 0.8Tc

0 5 10
Γt

0.0

0.1

0.2
T = 0.99Tc

U = 4k T

U = 6k T

U = 10k T

FIG. 3. Time evolution of the absolute value of the superconduct-
ing pair amplitude |F | after a quench for different temperatures and
different Coulomb interactions. The detuning is chosen as δ = 0.

the superconducting density of states is enhanced by the factor
ρBCS(U/2) compared with the normal-conducting case.

We illustrate our general consideration of the dot dynamics
after a quench with the concrete example of a quantum dot that
is prepared in the empty state, i.e., with P(0)

e = 1 and I (0)
z =

1/2 and all other density-matrix elements zero. The resulting
time dependence of the absolute value of the superconducting
pair amplitude on the quantum dot is given by

|F | = e−Z−t

√
4e−Z+t (X −)2 sinh2 �t

�2
+ 1

4
sin2 Bt . (26)

It is depicted in Fig. 3 for different temperatures and differ-
ent strengths of the Coulomb interaction. At short times, the
pair amplitude grows linearly in time due to real and virtual
tunneling processes between the dot and the lead. It reaches a
maximum at times 
t ∼ 1. The maximal value is suppressed
by large Coulomb interactions as these are detrimental to the
proximity effect. Furthermore, we find that the maximal pair
amplitude increases as the temperature is lowered because the
rate X − that governs the pseudospin accumulation grows as
temperature is decreasing. For longer times, the pair ampli-
tude decays exponentially towards zero with a rate given by
γch3. In addition to the exponential decay, the pair amplitude
also shows an additional oscillatory time dependence on a
time scale give by the inverse exchange field as can be seen
in Eq. (26).

Both the precession and the exponential decay occur with
rates and frequencies of the order of the tunnel coupling 
.
However, our numerical analysis reveals that the exchange
field is about a factor of 10 smaller than the decay rates. This
is because the decay rate gets enhanced by the BCS density
of states of the lead, while the exchange field, which contains
contributions from electrons at all energies, is suppressed by
the occurrence of the superconducting gap. As a result, the
precessional dynamics of the pseudospin that can be viewed
as an analog of the Higgs mode in bulk superconductors is
hardly visible after a quench.

−1.0

−0.9

−0.8

Φ
/π

T = 0.1Tc

−1.0

−0.9

−0.8
T = 0.5Tc

0 5 10
Γt

−1.0

−0.9

−0.8

Φ
/π

T = 0.8Tc

0 5 10
Γt

−1.0

−0.9

−0.8
T = 0.99Tc
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FIG. 4. Time evolution of the phase of the superconducting pair
amplitude � after a quench for different temperatures and different
Coulomb interactions. The detuning is chosen as δ = 0.

The phase of the pair amplitude after the quench is given
by

tan � = −�

4

eZ+t/2 sin Bt

X − sinh �t
. (27)

Its time evolution is shown in Fig. 4. As the quench takes
place, the phase jumps to a finite value and subsequently
decays to −π . The decay becomes slower as the Coulomb
interaction is increased because the BCS density of states
is smaller at larger energies. In addition, the decay becomes
slower as the temperature approaches the critical temperature
of the superconducting lead. This is a consequence of critical
slowing down. The time scale of the decay scales as |τ |−1,
where τ = (T − Tc)/Tc denotes the reduced temperature. This
behavior corresponds to a critical exponent of 1, in agreement
with the expectation of mean-field theory. We remark that
the scaling behavior occurs only for temperatures extremely
close to the phase transitions, where deviations from the BCS
mean-field descriptions are expected to become relevant. Fur-
thermore, as the induced pair amplitude goes to zero as the
critical temperature is approached, experimental observation
of the critical slowing down seems to be very challenging.

B. Periodic driving

As we have just discussed, the dynamics of the system after
a quench is dominated by an exponential relaxation towards
equilibrium because damping occurs on shorter time scales
than coherent oscillations. To overcome this issue, we are
going to analyze the system dynamics under a continuous,
periodic driving in the following. To this end, we consider
a situation where the dot is coupled to two superconducting
reservoirs. A temperature bias between the leads drives the
dot into a static nonequilibrium state with a finite pair ampli-
tude. The time-dependent, periodic driving of either the phase
difference φ(t ) or the dot level detuning δ(t ) with frequency ω

then gives rise to a nontrivial dynamics of the pair amplitude.
We are going to study the dynamics in three different pa-
rameter regimes. First, we will consider the case of adiabatic
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FIG. 5. Absolute value |F | and phase � of the superconducting
pair amplitude on the quantum dot as a function of phase differ-
ence φ and detuning δ. Parameters are TL = 0.9Tc, TR = 0.1TC , U =
3.6kBTc, and 
L = 
R = 
/2.

driving in Sec. IV B 1, where the dynamics can be understood
from the properties of the stationary state. Next, we turn to the
case of fast driving in Sec. IV B 2. Finally, we will address the
intermediate regime in Sec. IV B 3.

1. Adiabatic driving

If the driving frequency is much smaller than the tunneling
rates, ω 	 
/h̄, the state of the driven quantum dot at a given
time t is identical to the stationary state of the undriven system
with corresponding system parameters; that is, the dynam-
ics of the superconducting pair amplitude can be obtained
by solving the generalized master equations (10) and (13)
in the stationary limit dP/dt = dI/dt = 0 and substituting
the time-dependent phase difference φ(t ) or detuning δ(t ).
This constitutes a significant simplification compared with the
solution of the full, time-dependent master equation, which
considerably helps in understanding the underlying physics.

The resulting absolute value |F | and the phase � of the
dot’s pair amplitude are shown as a function of the phase
difference φ and the detuning δ in Fig. 5. We remark that
since � is not a physical observable, but should be considered
relative to the phases of the superconducting reservoirs, it is
a 4π -periodic rather than 2π -periodic function of φ. Let us

first consider the situation where the system is driven by a
phase difference that increases linearly with time, φ(t ) = ωt .
In this case, the absolute value of the pair amplitude |F |
shows small oscillations with time. The absolute value of
the modulation is nearly constant as a function of the de-
tuning δ; however, the relative modulation increases as δ is
tuned away from the particle-hole symmetric point due to the
suppression of the proximity effect. The modulation of |F |
arises because the time-dependent phase difference changes
the relative orientation of the pseudospin and the exchange
field and, thus, gives rise to a time-dependent modulation
of the pseudospin. The time-dependent phase difference φ(t )
furthermore gives rise to a phase of the pair amplitude on the
dot � that decreases with time. This might seem counterin-
tuitive because one might expect that as φL = ωt/2 increases
while φR = −ωt/2 decreases with time, the phase of the pair
amplitude on the dot stays nearly constant. However, one has
to take into account that the pair amplitude on the dot is a
nonequilibrium phenomenon that arises only in the presence
of a finite temperature bias which breaks left-right symmetry.
This is also the reason why � does not decrease linearly with
φ but rather decreases faster around φ = 0 and φ = 2π .

We now turn to the situation where the system is driven
by a time-dependent detuning of the form δ = δ0 + δ1 cos ωt ,
where adiabaticity requires a sufficiently small driving am-
plitude δ1 	 (kBT )2/ω. It gives rise to oscillations of the
absolute value of the dot’s pair amplitude |F |. These oscil-
lations are strongest if the detuning is varied between the
particle-hole symmetric point and some finite detuning, i.e.,
for δ1 = δ0, and show little sensitivity to the phase bias φ.
The phase of the dot’s pair amplitude also shows minor
oscillations. These arise because the detuning affects the z
component of the exchange field and therefore can accelerate
and decelerate the precession of the pseudospin in the x-y
plane.

To summarize, we find that for an adiabatic driving of
the system the amplitude mode of the pair amplitude can
be driven best by a time-dependent detuning δ(t ), while the
phase mode is most easily excited by a time-dependent phase
bias φ(t ). However, in general both modes are excited at
the same time. This constitutes an important difference from
the order-parameter dynamics in bulk superconductors, where
only the Higgs mode can be excited at low energies, while the
Nambu-Goldstone mode is shifted to the plasma frequency.

2. Fast driving

We now turn to the situation that the driving frequency is
much larger than the tunneling rates, ω 
 
/h̄. In order to
describe this scenario, we expand both the transition rates and
the density matrix into a Fourier series,

W(t ) = W0 + W+eiωt + W−e−iωt , (28)

ρred(t ) =
∑

n

ρneinωt , (29)

which allows us to recast the generalized master equation
into an infinite hierarchy of coupled equations for the Fourier
components of the density matrix

W−ρn+1 + (W0 − inω)ρn + W+ρn−1 = 0. (30)
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as well as of the amplitude |F | and the phase � of the pair amplitude
on the dot for a driving of the form φ(t ) = ωt . Parameters are TL =
0.9Tc, TR = 0.1Tc, U = 10kBTc, 
L = 
R = 
/2, and ω = 5
/h̄.

For driving frequencies ω 
 
/h̄, the master equation can be
solved approximately by performing a systematic expansion
of the density-matrix elements in powers of 
/(h̄ω), which is
equivalent to an expansion in powers of W±. To lowest order,
we obtain the time-averaged density matrix as

W0ρ
(0)
0 = 0. (31)

The first-order correction gives rise to the first harmonics

ρ
(1)
±1 = 1

±iω − W0
W±ρ

(0)
0 . (32)

More generally, we find that the (2n)th order of the expansion
in 
/(h̄ω) contributes to all even harmonics up to order 2n,
while the (2n + 1)th order of the expansion in 
/(h̄ω) gives
contributions to all odd harmonics up to order 2n + 1. As
a result, the generation of higher harmonics is suppressed
for fast driving. Physically, this is because the dot dynamics
becomes too slow to follow the external drive.

Let us now consider the situation where the system is
driven by a time-dependent phase difference φ(t ) = ωt . In
this case, the matrix W0 does not contain any term which
accounts for transitions between diagonal and off-diagonal
density-matrix elements. In consequence, the time-averaged
density matrix ρ

(0)
0 is diagonal such that the average pseu-

dospin components Ix and Iy vanish. A finite pseudospin
accumulation in the x-y plane occurs in the first harmonics ρ

(1)
±1

to first order in 
/(h̄ω). As can be seen in Fig. 6, the resulting
amplitude of the pseudospin oscillation is much smaller than
in the adiabatic regime. Just as in the adiabatic regime, we find
that the absolute value of the pair amplitude F oscillates with
the driving frequency, while its phase � and the pseudospin
components Ix and Iy oscillate with half the driving frequency.
The phase of the pair amplitude � decreases with time, which
is again linked to the breaking of left-right symmetry by the
temperature bias applied between the two superconductors. In
contrast to the pseudospin components and the absolute value
of the pair amplitude, it does not show a simple sinusoidal

time dependence because it is defined via the ratio of two
pseudospin components.

When the system is driven by a time-dependent level de-
tuning δ(t ) = δ0 + δ1 cos ωt , we find a qualitatively similar
behavior (not shown). Due to the fast driving, the oscillations
of the pseudospin components and the pair amplitude of the
quantum dot are small. In contrast to the phase-driven case, we
find that the pseudospin and pair amplitude all oscillate with
the driving frequency. The different time dependence occurs
because for a system driven by a time-dependent detuning, the
phase of the dot’s pair amplitude can be measured relative to
the time-independent phases of the superconducting leads. A
second difference from the phase-driven scenario is that the
pair amplitude of the quantum dot in general takes a finite
time-averaged absolute value when the system is driven by a
time-dependent gate voltage. Similarly to the adiabatic case,
we find that the amplitude mode of the quantum dot’s pair
amplitude is excited most easily by a time-dependent level
detuning δ(t ), while the phase mode can be excited better with
a time-dependent phase difference φ(t ).

3. Intermediate driving

We now turn to the case of intermediate driving, ω ∼ 
/h̄,
where the time-dependent generalized master equation has to
be solved numerically. The resulting time dependence of the
absolute value of the superconducting pair amplitude on the
quantum dot is shown in Fig. 7 for a system driven by a
time-dependent phase difference φ(t ) and a time-dependent
detuning δ(t ), respectively. Compared with the adiabatic case,
there is no qualitatively new behavior arising for intermediate
driving. Quite generally, we find that the amplitude of the
oscillations of |F | decreases as ω is increased in agreement
with the results for fast driving. While the generation of higher
harmonics can be enhanced for intermediate driving, higher
harmonics become suppressed when the driving becomes too
fast.

Our numerical solution of the generalized master equation
also allows us to address the question regarding up to which
driving frequency the adiabatic approximation provides reli-
able results for the pair amplitude dynamics. Interestingly, we
observe that the range of validity depends on which parameter
is used to drive the system and on how the parameter changes
with time.

When the system is driven by a time-dependent phase
difference φ(t ) = ωt , there is a good agreement between the
adiabatic approximation and the full numerical solution of the
generalized master equation up to driving frequencies of about
ω ≈ 0.2
/h̄. When the driving frequency is increased further,
the pair amplitude becomes suppressed compared with the
adiabatic case and is slightly phase-shifted but behaves qual-
itatively similar to the adiabatic regime otherwise. When the
system is driving by a time-dependent detuning δ(t ) = δ0 +
δ1 cos ωt , the deviations between the adiabatic approximation
and the numerical solution occur already for lower driving
frequencies. They affect, in particular, the absolute value of
the pair amplitude |F | (compare Fig. 7), while they hardly
affect its phase � at all (not shown). The deviations from the
adiabatic solution are most prominent when the detuning be-
comes zero or even changes sign during the driving protocol.

045414-8



HIGGS-LIKE PAIR AMPLITUDE DYNAMICS IN … PHYSICAL REVIEW B 103, 045414 (2021)

0.0 0.2 0.4 0.6 0.8 1.0
ωt/2π

0.00

0.01

0.02

0.03

|F
|

ω

(a)

0.0 0.2 0.4 0.6 0.8 1.0
ωt/2π

0.00

0.01

0.02

0.03

|F
|

ω

(b)
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Physically, this arises because a sign change in δ implies a
sign change in the z component of the exchange field, which
has a significant impact on the pseudospin dynamics in the x-y
plane.

In addition, we find that independent of the precise driving
scheme, the deviations from adiabaticity are less pronounced
for small Coulomb energies U ≈ 2�0. In this case, tunneling
between the dot and the lead is enhanced by the BCS density
of states in the leads such that the effective tunnel coupling
can be much larger than 
η. As a result, the ratio between the
driving frequency and the effective tunnel coupling is reduced,
and the system is closer to the adiabatic condition.

V. DISCUSSION AND CONCLUSION

We have investigated the dynamics of the superconducting
pair amplitude of a quantum dot coupled to two supercon-
ducting electrodes under a time-dependent external driving.
Using a real-time diagrammatic approach, we have derived
a generalized master equation for the reduced density matrix
of the quantum dot that accounts for nonequilibrium effects
and strong Coulomb interactions exactly and performs a sys-
tematic expansion in the tunnel-coupling strength. We find
that the pair amplitude of the dot can be characterized in
terms of a pseudospin which describes coherent superposi-
tion of the empty and doubly occupied dot states and which
obeys a Bloch-type equation with accumulation and relaxation
terms due to electron tunneling and a coherent precession
in an effective exchange field due to virtual Andreev tunnel
processes. Since the damping rate is in general one order of
magnitude faster than the precession frequency, the relaxation
dynamics after a quench is dominated by an exponential decay
towards equilibrium where pair amplitude oscillations cannot
be observed. This issue can be overcome by a periodic driving
of the system, which we find to give rise to self-sustained
oscillations of both the absolute value and the phase of the pair
amplitude. The oscillations are most prominent for adiabatic
driving, while the amplitude of oscillations is strongly sup-
pressed for fast driving. The oscillations constitute the analog
of the Higgs and Nambu-Goldstone modes in bulk supercon-
ductors. Interestingly, driving the system out of equilibrium
by a temperature bias is important to reveal the coherent pair
amplitude dynamics even in the weak-coupling limit consid-
ered here.

We remark that the spin dynamics in a quantum-dot spin
valve [45–47], i.e., a single-level quantum dot coupled to two
noncollinearly magnetized ferromagnetic leads, can also be
analyzed in the framework of Nambu-Goldstone and Higgs
modes. In this case, the (real) spin precession caused by
an effective exchange field is the analog of the Nambu-
Goldstone mode, while the accumulation and relaxation of
the spin is connected to the Higgs mode. More generally,
quantum dots coupled to reservoirs with spontaneously bro-
ken symmetries should always exhibit analogs of Higgs and
Nambu-Goldstone modes.

Our results motivate the study of the order-parameter
dynamics in superconductor–quantum-dot hybrids in other
parameter regimes such as the infinite-gap limit, where the
superconducting gap provides the largest energy scale in the
problem. Furthermore, it is an interesting avenue of future
research to link the pair amplitude dynamics of the quantum
dot to transport signatures such as charge and heat currents
and their respective fluctuations.
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